入門線形代数

【入門線形代数】表現行列①-線形写像-

表現行列は3記事に分けて説明していきます.「表現行列①」は表現行列の1記事目です. 「表現行列①」では,表現行列の定義とその定義に忠実に表現行列を計算できるようになっていこうと思います!!
入門線形代数

【入門線形代数】内積空間とは-内積空間-

「内積空間」ではベクトル空間の時に考えた内積の話を一般化して,さらに有名な不等式であるシュヴァルツ不等式と三角不等式の証明をしていこうと思います. この2つの不等式はとても有名なものですのでいろいろなところで出てきます.是非証明もできるようになっておくと良いでしょう
入門線形代数

【入門線形代数】表現行列②-線形写像-

「表現行列②」では基底変換行列を用いて表現行列を求めていこうと思います! 「表現行列①」では定義から表現行列を求めましたが,今回の求め方も試験等頻出の重要単元です.是非しっかりマスターしてしまいましょう!
入門線形代数

【入門線形代数】ベクトルの内積-ベクトル空間-

「ベクトルの内積」では,ベクトル同士の掛け算についてみていきましょう! ベクトル同士の掛け算はただ掛け算を行うだけではなく ベクトルの方向も気にします(下で出てくるなす角のことです.)
入門線形代数

【入門線形代数】成分表示されたベクトルの内積-ベクトル空間-

「成分表示されたベクトルの内積」では,ベクトルが成分表示されている場合の内積を求めていこうと思いますベクトルの内積について理解が怪しい方は「ベクトルの内積」を復習してからこちらの記事を勉強すると良いでしょう!
入門線形代数

【入門線形代数】rankと一次独立性-ベクトル空間-

「rankと一次独立性」では,rankを用いて一次独立かどうかを判定していくということをやっていこうと思います. この記事は「同次連立一次方程式と一次独立性」と非常に関連があるのでそちらの記事も参考にして学習を進めるとより理解が深まります
入門線形代数

【入門線形代数】ベクトルの和とスカラー倍-ベクトル空間-

「ベクトルの和とスカラー倍」では,ベクトルの演算として 和とスカラー倍を考えていこうと思います. この和とスカラー倍を勉強することでベクトルを足したり伸縮を考えることができるように なりますので,ぜひしっかりとマスターしましょう
入門線形代数

【入門線形代数】行列の積-行列-

行列同士を掛け算したらどのような結果になるのでしょうか? ただ単純に各成分同士を掛け算だけでは行列の積は計算できません. じつは行列同士の掛け算は独特の計算が行われます.
入門線形代数

【入門線形代数】写像とは?(全射・単射)-線形写像-

「写像とは?」では写像という線形代数に限らずほかの単元でもとても大切になってくる概念を勉強していこうと思います。 写像とは何かということと全射・単射・全単射という写像の種類を見分けることができることになることを目標に勉強していきましょう!!
入門線形代数

【入門線形代数】一次結合と生成系-ベクトル空間-

「一次結合と生成系」ではのちに一次従属と一次独立で勉強する際に重要になる一次結合と 生成系というベクトル空間の基盤となるものを扱っていこうと思います. どちらも知っておかないとこの先の学習がしづらくなってしまいますので是非しっかりと おさえてしまいましょう!
入門線形代数

【入門線形代数】行列の簡約化-連立一次方程式-

「行列の簡約化」は連立一次方程式の解を求める方法である「掃き出し法」につながる内容です. 連立一次方程式を上手に解くためにも, 簡約化の内容をしっかりと抑えましょう!
入門線形代数

【入門線形代数】部分空間-演習問題解説付-

「部分空間」では,ベクトル空間の部分集合について議論していこうと思います!部分空間かどうか判定できるようになることは今後の学習で大切になってきますのでぜひともしっかりとマスターしてしまいましょう!
タイトルとURLをコピーしました