入門線形代数

【入門線形代数】同次連立一次方程式と一次独立性-ベクトル空間-

「同次連立一次方程式と一次独立性」では,同次連立一次方程式の自明解と非自明解を使って一次独立か一次従属かどうかを判断する方法を学んでいこうと思います!! 今回やる方法はrankによる一次独立性の判断にもつながるとても大切な単元ですので,しっかりとマスターしていきましょう!
入門線形代数

【入門線形代数】1次,2次,3次正方行列の行列式

「1次,2次,3次正方行列の行列式」では低い次元での行列式を定義していこうと思います! 一般のn次元の正方行列とは異なり3次までは特別に計算法がありますので,それをしっかり学んでいくことにしましょう!
入門線形代数

【入門線形代数】正規直交基底とグラムシュミットの直交化-内積空間-

「正規直交基底とグラムシュミットの直交化法」ではせいきという基底をグラムシュミットの直交化法という特殊な方法を用いて求めていくということを行っていこうと思います. グラムシュミットの直交化法は試験等よく出るのでしっかりと計算できるように練習しましょう!
数学勉強法

【新入生・院試対策】数学科がオススメする線形代数参考書7冊まとめ【厳選】

本記事では、僕が数学科で勉強をする中で【大学講義のレポート作成、大学の講義の予習復習、大学の定期試験勉強、大学院試験】にガチで役立った書籍7冊を紹介します。
入門線形代数

【入門線形代数】逆行列の求め方(簡約化を用いた求め方)-行列式-

「逆行列の求め方(簡約化を用いた求め方)」では,簡約行列を用いて逆行列を求めていくということをしていこうと思います!!この記事では簡約行列を計算できることが大切ですので,もし怪しい方はこちらの記事で簡約行列を復習してから今回の内容を勉強するとより理解が深まることでしょう!
入門線形代数

【入門線形代数】固有値・固有ベクトル-標準化-

「固有値・固有ベクトル」では線形代数の中でも非常に重要な対角化を行うために必要な固有値と固有ベクトルという概念を学んでいきます.応用範囲も広く試験等でも定番中の定番の範囲ですのでしっかりと学んでいきましょう!
入門線形代数

【入門線形代数】線形写像とは-線形写像-

「線形写像とは」では、写像の中でも扱いやすい線形写像という写像について扱っていこうと思います。線形写像とはベクトル空間からベクトル空間への写像で和とスカラー倍の2つの演算を保存するものです!
入門線形代数

【入門線形代数】写像とは?(全射・単射)-線形写像-

「写像とは?」では写像という線形代数に限らずほかの単元でもとても大切になってくる概念を勉強していこうと思います。 写像とは何かということと全射・単射・全単射という写像の種類を見分けることができることになることを目標に勉強していきましょう!!
入門線形代数

【入門線形代数】行列の相等と演算-行列-

「行列の 相等と演算」では,行列は数を並べたものでしたが,その行列同士が等しいことや 行列を演算させて和やスカラー倍を考えるとどうなるのかこの2つを解説していこうと思います!!
入門線形代数

【入門線形代数】ベクトルの内積-ベクトル空間-

「ベクトルの内積」では,ベクトル同士の掛け算についてみていきましょう! ベクトル同士の掛け算はただ掛け算を行うだけではなく ベクトルの方向も気にします(下で出てくるなす角のことです.)
入門線形代数

【入門線形代数】行列とは?-行列-

大学数学をわかりやすくまとめた「ますのーと」線形代数という学問は基本的に行列を足したり引いたり変形したりして行っていくことになります. ただ行列って何でしょうか?もちろんお店に並ぶ行列の事ではありません笑ここでは,数学的に行列を定義して理解することを目標にして説明をしていきます!!
入門線形代数

【入門線形代数】行列の行基本変形-連立一次方程式-

今回は, 行列の「行基本変形」と呼ばれる操作について解説します. 行基本変形を行うことで行列をシンプルな形に変形することができます. また, この操作は連立一次方程式を解くことや, その先の単元でもとても大切になるので, しっかりマスターしましょう!
タイトルとURLをコピーしました