入門線形代数

【入門線形代数】行列とは?-行列-

大学数学をわかりやすくまとめた「ますのーと」線形代数という学問は基本的に行列を足したり引いたり変形したりして行っていくことになります. ただ行列って何でしょうか?もちろんお店に並ぶ行列の事ではありません笑ここでは,数学的に行列を定義して理解することを目標にして説明をしていきます!!
入門線形代数

【入門線形代数】いろいろな行列-行列-

「いろいろな行列」では,単位行列や零行列のように特別に名前のついた行列がいくつかありますのでそのうちの 正方行列と転置行列を紹介します.
入門線形代数

【入門線形代数】表現行列②-線形写像-

「表現行列②」では基底変換行列を用いて表現行列を求めていこうと思います! 「表現行列①」では定義から表現行列を求めましたが,今回の求め方も試験等頻出の重要単元です.是非しっかりマスターしてしまいましょう!
入門線形代数

【入門線形代数】正規直交基底とグラムシュミットの直交化-内積空間-

「正規直交基底とグラムシュミットの直交化法」ではせいきという基底をグラムシュミットの直交化法という特殊な方法を用いて求めていくということを行っていこうと思います. グラムシュミットの直交化法は試験等よく出るのでしっかりと計算できるように練習しましょう!
入門線形代数

【入門線形代数】rankと一次独立性-ベクトル空間-

「rankと一次独立性」では,rankを用いて一次独立かどうかを判定していくということをやっていこうと思います. この記事は「同次連立一次方程式と一次独立性」と非常に関連があるのでそちらの記事も参考にして学習を進めるとより理解が深まります
入門線形代数

【入門線形代数】ベクトルの外積-ベクトル空間-

「ベクトルの外積」では,ベクトルの内積とは異なるベクトル同士の積である外積を学んでいきます.ベクトルの外積はベクトルとベクトルの積から構成されるベクトルということでベクトル積という別名がついています.今回はそんなベクトルの外積を3次元について定義していこうと思います!
入門線形代数

【入門線形代数】掃き出し法-連立一次方程式-

「掃き出し法」では, 実際に行列の簡約化を用いて連立一次方程式を解いていきます!! 連立一次方程式を解くことは, 以降の様々な場面で登場します. 非常に大切な内容なので, しっかりとマスターしていきましょう!
入門線形代数

【入門線形代数】n次正方行列の行列式(余因子展開)-行列式-

「n次正方行列の行列式(余因子展開)」では,行列の余因子展開を用いてn次の正方行列の行列式を求めていくということを行います.
入門線形代数

【入門線形代数】ベクトルとは?-ベクトル空間-

「ベクトルとは?」では,ベクトルという概念を数学的に定義します. このベクトルはタイトルにもあるベクトル空間のスタートとなり今後ずっと議論していく対象でもありますので,しっかりマスターしてしまいましょう!
入門線形代数

【入門線形代数】逆行列の求め方(余因子行列)-行列式-

「逆行列の求め方(余因子行列)」では,逆行列という簡単に言うならば逆数の行列バージョンを 余因子行列という行列を用いて計算していくことになります.
入門線形代数

【入門線形代数】逆行列の求め方(簡約化を用いた求め方)-行列式-

「逆行列の求め方(簡約化を用いた求め方)」では,簡約行列を用いて逆行列を求めていくということをしていこうと思います!!この記事では簡約行列を計算できることが大切ですので,もし怪しい方はこちらの記事で簡約行列を復習してから今回の内容を勉強するとより理解が深まることでしょう!
入門線形代数

【入門線形代数】行列式の性質-行列式-

「行列式の性質」では,一般の行列式に対して成り立つ性質を見ていくことにします! 行列式を求める方法として別記事でサラスの公式や余因子展開を用いる方法などを紹介しましたが, 今回の性質と組み合わせれば簡単に行列式を求める際に非常に強力な武器になります.
タイトルとURLをコピーしました